首页> 外文OA文献 >Adaptive Hausdorff estimation of density level sets
【2h】

Adaptive Hausdorff estimation of density level sets

机译:密度水平集的自适应Hausdorff估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Consider the problem of estimating the $\gamma$-level set$G^*_{\gamma}=\{x:f(x)\geq\gamma\}$ of an unknown $d$-dimensional densityfunction $f$ based on $n$ independent observations $X_1,...,X_n$ from thedensity. This problem has been addressed under global error criteria related tothe symmetric set difference. However, in certain applications a spatiallyuniform mode of convergence is desirable to ensure that the estimated set isclose to the target set everywhere. The Hausdorff error criterion provides thisdegree of uniformity and, hence, is more appropriate in such situations. It isknown that the minimax optimal rate of error convergence for the Hausdorffmetric is $(n/\log n)^{-1/(d+2\alpha)}$ for level sets with boundaries thathave a Lipschitz functional form, where the parameter $\alpha$ characterizesthe regularity of the density around the level of interest. However, theestimators proposed in previous work are nonadaptive to the density regularityand require knowledge of the parameter $\alpha$. Furthermore, previouslydeveloped estimators achieve the minimax optimal rate for rather restrictedclasses of sets (e.g., the boundary fragment and star-shaped sets) thateffectively reduce the set estimation problem to a function estimation problem.This characterization precludes level sets with multiple connected components,which are fundamental to many applications. This paper presents a fullydata-driven procedure that is adaptive to unknown regularity conditions andachieves near minimax optimal Hausdorff error control for a class of densitylevel sets with very general shapes and multiple connected components.
机译:考虑估计一个未知的$ d $维密度函数$ f $的$ \ gamma $级集合$ G ^ * _ {\ gamma} = \ {x:f(x)\ geq \ gamma \} $的问题基于来自密度的$ n $个独立观测值$ X_1,...,X_n $。该问题已在与对称集差异有关的全局误差准则下得到解决。然而,在某些应用中,期望空间统一的收敛模式以确保估计的集合在任何地方都接近目标集合。 Hausdorff误差准则提供了这种程度的一致性,因此,在这种情况下更为合适。已知对于具有Lipschitz函数形式的边界的水平集,Hausdorffmetric的最小最大误差收敛的最佳速率是$(n / \ log n)^ {-1 /(d + 2 \ alpha)} $ $ \ alpha $表征了感兴趣水平附近密度的规律性。但是,先前工作中提出的估计量与密度规则性不相适应,并且需要了解参数$ \ alpha $。此外,先前开发的估计器针对相当有限的集合类(例如边界片段和星形集合)达到了最小最大最优速率,从而有效地将集合估计问题简化为函数估计问题。此特征排除了具有多个连接组件的水平集合,即许多应用程序的基础。本文提出了一种完全数据驱动的过程,该过程适用于未知的规则性条件,并且对于具有非常通用的形状和多个连接的组件的一类密度水平集,可实现接近最小最大最优Hausdorff误差控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号